Interfacial Electronic Structure of Methylammonium Lead Iodide Grown on a Mesoporous TiO₂ Layer on F-Doped Tin Oxide Substrate

Yu Kwon Kim,^{*,†,‡} Byungwook Jeon,[†] and Hui Joon Park^{*,†,§}

[†]Division of Energy Systems Research, [‡]Department of Chemistry, and [§]Department of Electrical and Computer Engineering, Ajou University, Suwon 16499, South Korea

ABSTRACT: Interfacial electronic structure at the perovskite $CH_3NH_3PbI_3/TiO_2$ or $MAPbI_3/TiO_2$ interface has been investigated using a high-resolution synchrotron photoemission spectroscopy. The core levels and valence band spectra of our solution-processed MAPbI_3 layers spin-coated on a mesoporous TiO_2 substrate are consistent with a pure iodide perovskite (MAPbI_3) with residual methylammonium ($CH_3NH_3^+$) trapped within the perovskite crystal lattice, which is in contact with TiO_2 . In addition, we show spectroscopic evidence for the presence of PbI_2 and methylamine (CH_3NH_2) at the MAPbI_3/TiO_2 interface. Interestingly, the Fermi level (E_F) aligned to the conduction band minimum (CBM) of both layers is found to be lifted via a band bending which may be attributed to characteristic chemical bonding structures at the interface. The band bending may act as an electron transfer barrier between MAPbI_3 and TiO_2 . Thus, our findings in interfacial electronic structure of MAPbI_3 layers on TiO_2 will be crucial in understanding its photovoltaic performance.

1. INTRODUCTION

Organic-inorganic halide materials such as methylammonium lead halides $(CH_3NH_3PbX_3, X = I, Cl, Br)$ have attracted a great deal of attention from many people due to their successful applications as highly efficient photovoltaic materials.¹⁻³ The attraction is not only due to the cheapness and abundance of the raw materials but also due to many beneficial physical properties such as strong visible-light absorption, long exciton lifetime, high hole conductivity, and easy fabrication process.^{4–} In addition, the bulk structure of those materials are built on the perovskite lattice based on the octahedral cages made of inorganic divalent metals (e.g., Pb^{2+} , Sn^{2+} , and Ge^{2+}) and halide anions (e.g., Cl, Br, and I) and charge-balancing organic units such as a methylammonium cation (CH₃NH₃⁺, MA⁺).^{4,8} Thus, changing stoichiometries of cations and anions provide a chance of obtaining perovskite materials with tunable bandgap (E_{α}) in the whole visible range^{6,9} for the design of an efficient photovoltaic cell with high open-circuit voltage (V_{oc}) .

Ever since the successful application in solar cells in 2009,^{1,10} the optimized synthetic techniques and stack structures have reached a level of efficiency higher than 20%.¹¹ In general, for an efficient solar cell performance, a stack structure requires the conducting perovskite structure deposited onto a blocking layer such as TiO₂.^{11–13} Studies on the interfacial photophysical mechanisms at the heterojunction are in progress and suggest that one of the important reasons of the high efficiency of MAPbX₃ perovskite-based solar cells is its long carrier diffusion lengths that can exceed even several micrometers in a MAPbX₃ absorber.^{14,15} An efficient ultrafast photoexcited electron transfer from MAPbX₃ to TiO₂ is also considered to be important to improve the efficiency. Recent studies indicate that characteristics on electron transfer between perovskite and TiO₂ are strongly influenced by the interface electronic

Thick-Pero 1.5 eV 3.2 eV Thick-Pero 1.5 eV 3.2 eV Thick-Pero 0 7 0 9 0 0 1.7 eV Thick-Pero 0 7 1.7 eV Thick-Pero 0 7 1.7 eV 1

structure between the two layers.¹⁶A diverse range of the charge transfer times (spanning <1 ps to hundreds of ps) and varying efficiencies observed at the heterojunction^{5,17,18} may be in part due to the delicate variation in the chemical bonding and electronic structures at the interface. For example, the mixed halide perovskite/TiO₂ interface may be chemically enriched with Cl which may change the bulk phase of the perovskite layer, influencing the overall photoexcitation efficiency.^{19,20} Thus, understanding the chemical and electronic properties of the MAPbX₃/TiO₂ interface is crucial for improving device optimization. In accordance with the research needs, recent studies are focused on elucidating the electronic structure of the TiO₂/MAPbI₃ interface through combined XPS/UPS measurements.^{12,13,16,21} XPS has been deliberately employed to explore the interface and bonding structure of the perovskite materials such as vacuum-deposited MAPb(I_{1-y}Cl_y)₃ films²² and solution spin-coated MAPbI₃ films.²³

In this study, we investigated the chemical states of the MAPbI₃/TiO₂ interface by preparing fairly thin MAPbI₃ layers on TiO₂ to be probed by synchrotron photoemission spectroscopy. All the preparation procedures are the same as those for the solution-based real solar cell device fabrication process except that the thickness is controlled to be either thin (a few nm) or thick (~80 nm). Comparing the core levels and the valence band spectra of the two samples revealed that the charge transfer at the interface shifts the band alignment at the interface in a way to inhibit the efficient electron transfer between the two layers.

Received:July 26, 2016Revised:August 29, 2016Published:September 21, 2016

Figure 1. SEM images of the (a, b) thin (Thin-Pero) and (c, d) thick (Thick-Pero) perovskite layers spin-coated on TiO₂/FTO. (a, c) Cross-section view. (b, d) Top view.

Figure 2. Pb 4f and I 3d core level spectra taken with a photon energy of 350 (690) eV for the thick perovskite film (Thick-Pero, top) and the thin perovskite film (Thin-Pero, bottom).

2. EXPERIMENTAL DETAILS

2.1. Preparation of the MAPbl₃/TiO₂/FTO. The fluorinedoped tin oxide (FTO)-coated glass substrates were cleaned by acetone, isopropyl alcohol (IPA), and deionized (DI) water sequentially using ultrasonication. The FTO substrates were treated with O₂ plasma for 3 min prior to use. To prepare the blocking layer TiO₂ on FTO, 0.15 M titanium diisopropoxide bis(acetylacetonate) (75% in 2-propanol, Sigma-Aldrich) was spin-cast on FTO, which was subsequently heated in the furnace at 500 °C for 30 min. This TiO₂ layer prevents the direct contact between FTO and the perovskite photoactive layer. The mesoporous-TiO₂ layer was formed by spin-casting TiO₂ paste (Dyesol), diluted by ethanol (3.5:1 w/w) on blocking-TiO₂/FTO substrate at 5000 rpm for 40 s, followed by an annealing process at 500 °C for 30 min. The CH₃NH₃PbI₃ (or MAPbI₃) perovskite layer was prepared on the mesoporous-TiO₂ layer as follows. First, CH₃NH₃I was

prepared from CH₃NH₂ (24 mL, 33% in ethanol, Sigma-Aldrich) and HI (10 mL, 57 wt % in water, Sigma-Aldrich), which were mixed at 0 °C and stirred for 2 h, and the resulting solution was evaporated by a rotary evaporator at 60 °C for 30 min. The product was dissolved in ethanol and washed by diethyl ether three times. Finally, the product was dried at 70 °C in a vacuum oven for 24 h. The PbI₂ was purchased from Sigma-Aldrich and used as received. PbI₂ and CH₃NH₃I (1:1 molar ratio) were added to the mixture of γ -butyrolactone (GBL) and dimethyl sulfoxide (DMSO) (7:3 v/v) in an inert atmosphere. The solution was stirred at 70 °C for at least 12 h before use. The solution (0.9 M solution for Thick-Pero and 0.6 M solution for Thin-pero) was spin-cast onto the mesoporous-TiO₂/blocking-TiO₂/FTO substrate at 1000 rpm for 10 s and 5000 rpm for 20 s sequentially. During the second spin-casting step, 1 mL of toluene was added onto the substrate. To explore the interface between the perovskite and the TiO_{2} , the thickness of the perovskite layer was controlled to

Figure 3. C 1s and N 1s core level spectra taken with a photon energy of 350 (450) eV at normal emission for the thick perovskite film (Thick-Pero, top) and the thin perovskite film (Thin-Pero, bottom).

be either thin (\sim a few nm, Thin-Pero) or thick (\sim 80 nm, Thick-Pero). After spin-casting, the substrate was annealed at 100 °C for 10 min on a hot plate.

The cross-sectional SEM images as well as the top-view images of the two samples are displayed in Figure 1. The crosssectional view of Thick-Pero (Figure 1(c)) confirms the thickness of MAPbI₃ is about 80 nm. The film, however, is not uniform and has crevices (see Figure 1(c) and (d)) allowing the underlying TiO₂ layer to be seen by XPS. For the case of Thin-Pero, the large area of the TiO₂ layer is directly exposed to the surface with some MAPbI₃ particles distributed on the surface. This condition allows us to measure the chemical states of both MAPbI₃ and TiO₂ layers and the interfacial states for both samples.

2.2. Photoemission Characterization. All experiments were performed in an UHV chamber attached to the 10D beamline of Pohang Accelerator Laboratory (PAL). The perovskite samples cut into $\sim 5 \times 5$ mm size were mounted onto a Mo sample holder by wrapping Ta strips around the samples and spot-welding the Ta strips onto the Mo sample holder. A thick Au film of $\sim 5 \times 5$ mm in size was also attached to the sample holder to be used as a reference for binding energy calibration.

Photoemission spectra of Pb 4f, I 3d, N 1s, C 1s, Ti 2p, and O 1s core levels and valence band were taken using a commercial electron analyzer (PHOIBOS 150, SPECS) at a fixed normal emission geometry at RT. Photon energies were varied at 250–690 eV. The binding energies of the photoemission spectra were determined by taking the binding energy of the Au $4f_{7/2}$ core level to be 84 eV.

3. RESULTS AND DISCUSSION

Figure 2 shows Pb 4f and I 3d core levels taken from the thick (Thick-Pero) and thin (Thin-Pero) perovskite films. The Pb 4f core level shows well-resolved Pb 4f features with spin—orbit split of 4.9 eV. We find that the main Pb 4f feature is centered at 138.4 eV for both cases. However, the detailed spectral shape of Thin-Pero is extended toward higher binding energy, suggesting the presence of another component. Also, we note a small shoulder at 136.7 eV (see the arrow in Figure 2); it is assigned to metallic Pb²⁴ which is commonly observed from decomposition of MAPbI₃.²³ The Pb 4f is fitted with two components at Pb 4f_{7/2} binding energies at 138.4 and 139.1 eV,

respectively. The peak at 138.4 eV dominates the Pb 4f features of Thick-Pero, while the one at 139.1 eV is enhanced for Thin-Pero. Thus, the high-binding-energy peak must be related to those Pb species at the interface between MAPbI₃ and TiO₂. Since the binding energies of Pb^{2+} from MAPbX₃ (X = I, Br, 3,25-27 it is Cl) are commonly observed at 138.4–138.7 eV,²², reasonable to assign the one at 138.4 eV to the bulk Pb²⁺ component of the MAPbI3 film. The blue-shifted Pb component (139.1 eV) may be related to oxidized Pb³⁺ species²⁶ or to PbI₂/TiO₂; a blue shift in the Pb 4f binding energy (to 138.8 eV) is suggested for TiO_2/PbI_2 compared to that of $TiO_2/CH_3NH_3PbI_3$.¹³ A tiny amount of residual PbI_2 impurity is often found in the perovskite crystal phase in the MAPbI₃-based photoactive layer for high performance solar cells.^{21,28–30} The roles of PbI_2 are under intense investigation and are suggested to be either positive (passivation of grain boundary of perovskite crystal,²⁸ enhancement of the electronic coupling at the interface with TiO_{2}^{21} or reduction of the trap density at that interface²⁹) or negative (electron blocking due to its higher conduction band than perovskite,³⁰ inducing an intrinsic instability to the film under illumination,³¹ increasing hysteresis³²). The conflicting roles of PbI_2 may be attributed to different preparation methods which can influence the actual amount and the morphology of the residual PbI_2 in perovskite films. Considering the nonoxidizing condition of our preparation method, it seems also reasonable to assign the 139.1 eV Pb component to PbI₂ predominantly accumulated around the interface with TiO₂.

Also shown in Figure 2 is the I 3d core level which can be fitted with a single component with a characteristic spin—orbit split of 11.5 eV. The I $3d_{5/2}$ binding energy is determined to be 619.1–619.2 eV for both films. The measured I $3d_{5/2}$ binding energies also fall in the range of I⁻ species observed for MAPbI₃/TiO₂ of other groups.¹³

The presence of methylammonium (MA, $CH_3NH_3^+$) in the lattice is evidenced from C 1s and N 1s core levels shown in Figure 3. The C 1s core level features a peak centered at 285 eV with shoulders toward higher binding energies, which are fitted with three components at 285 (C1), 286.6 (C2), and 288.8 (C3) eV, respectively. Although the peak at 285 eV (C1) is a dominant one, it is likely to be C-based contaminants residing at the perovskite/TiO₂ surface since it is commonly observed from the spectra of ex-situ spin-coated samples. The C 1s peak

The Journal of Physical Chemistry C

that is assigned to C species of methylammonium in the perovskite is the one at 286.6 eV after the comparison of the binding energies obtained from other studies.^{25,33,34} The small peak at 288.8 eV is likely to be airborne C contaminants such as carbonate species.

N 1s core level spectra in Figure 3 exhibit a major peak at 402.4 eV with a shoulder at lower binding energies. Fitting reveals two components at 402.4 (N1) and 400 (N2) eV, respectively. Very similar N 1s spectral shape with a peak at 402 eV and shoulders toward lower binding energies was also detected for the CH₃NH₃PbI_{3-r}Cl_r perovskite films/Al₂O₃ (and Si)²⁵ and for CH₃NH₃PbI₃ on TiO₂ at 402.7 eV.³³ Also, the N 1s peak at 402 eV has been reported for the MAI/PbCl₂ bilayer film in situ deposited on an ITO glass.³⁴ Thus, the NI peak can be assigned to N species in methylammonium $(CH_3NH_3^+)$ trapped within the perovskite crystal lattice. The N 1s peak close to 400 eV was also observed from molecular methylamine (CH₃NH₂) condensed on metal surfaces as a multilayer³⁵ or a free terminal NH₂ group as in self-assembled monolayers of S-bound aminethiols on Au.36 A similar Ncontaining molecule such as 4-mercaptopyridine bound to TiO₂ may show a N 1s peak at 400-401.5 eV depending on the binding sites (Ti or OH sites).37 Protonation of the amine group to $-NH_3^+$ species may induce a blue-shift in the N 1s binding energy by about 1-2 eV to 401-402 eV,³⁸ as has been observed for the MA-based perovskite films.^{25,33,34} Interestingly, the ratio of N2 to N1 is higher for Thin-Pero than for Thick-Pero suggesting that N2 is related to those accumulated at the interface or in contact with TiO2. Thus, the N2 species may be assigned to excess molecular species (such as CH_3NH_2) at the interface accumulated at the interface or bound to TiO₂ during the formation of the perovskite phase.²⁰

Figure 4 compares the valence band spectra for the two (thick and thin) perovskite films on TiO_2 taken with various photon energies. We note that the valence band spectra for Thick-Pero show dominant features at 2–5 eV associated with the electronic states of PbI_3^- , while those for Thin-Pero have more pronounced bands at 4–8 eV due to the dominant

Figure 4. Valence band spectra taken with the photon energies of 250, 350, 450, and 690 eV at normal emission for the thick perovskite film (Thick-Pero, black) and the thin perovskite film (Thin-Pero, gray).

contribution of the TiO₂ layer in the valence band. The very similar valence band shape with the perovskite features at 2–5 eV has been also reported for the earlier studies on TiO₂/ $CH_3NH_3PbI_3^{13}$ and $CH_3NH_3PbI_2Cl$ perovskite.²⁴

The features at 2–5 eV originate from the contribution of the iodides (I 5p) at 3 eV and the Pb–I–Pb bonds with bonding (at ~5 eV) and antibonding (at valence band edge) states.^{8,13} By extrapolating the decaying intensity toward zero (represented by the horizontal baseline), the valence band maximum (VBM) is determined to be about 1.5 eV below the Fermi level (E_F). VBM position of 1.5 eV is very close to the nominal energy gap (1.5–1.6 eV) predicted for the halide perovskite CH₃NH₃PbI₃.⁸

For Thin-Pero, the contribution of O 2p at ~4 eV is especially pronounced for the valence band spectrum taken with the photon energy of 250 eV (see Figure 4) due to the large contribution of the surface-exposed TiO₂ layers. Thus, the VBM of the TiO₂ layer may be obtained by the extrapolation of the decaying edge of the O 2p band, which gives about 3.2 eV below the $E_{\rm F}$. The value is very close to the band gap of TiO₂, indicating that the $E_{\rm F}$ of the TiO₂ is aligned to the bottom of its conduction band. Thus, for the case of Thin-Pero, the Fermi levels of the perovskite and TiO₂ layers are assumed to be aligned to the bottom of their respective conduction band minimums (CBM).

The O 1s and Ti 2p core level spectra for the thin and thick samples are presented in Figure 5. Main spectral features are consistent with that expected from the stoichiometric TiO_2 layer with Ti^{4+} and O^{2-} . The O 1s peak at 530.3 eV for Thin-Pero is assigned to the lattice O^{2-} species of TiO_2 . The

Figure 5. O 1s and Ti 2p core level spectra taken with a photon energy of 690 eV at normal emission for the thin (Thin-Pero, gray) and thick (Thick-Pero, black) perovskite/TiO₂.

The Journal of Physical Chemistry C

asymmetric tail toward high-binding energy extended from 502 to 505 eV is due to oxygen atoms in hydroxyls (-OH) and chemisorbed water, which are blue-shifted by about 1.6 and 2.9 eV, respectively, from the main oxide peak.³⁹ The oxygen functional groups in airborne contaminants may also contribute to the spectrum and overlap with that from OH. The Ti $2p_{3/2}$ peak at 458.9 eV is assigned to the lattice Ti⁴⁺ of TiO₂. No distinct low-binding energy tail or shoulder is observed, indicating a stoichiometric TiO₂.

Interestingly, we note the binding energies of Ti 2p and O 1s for Thick-Pero are shifted toward lower binding energies by about 0.4 eV compared to those for Thin-Pero, while Pb 4f and I 3d core levels are not (see Figure 2). The unambiguous shift in the binding energies of the Ti 2p and O 1s core levels from the skin-depth layers of TiO₂ underneath the perovskite layer between Thin-Pero and Thick-Pero can be understood from the fact that the Fermi level of the sample holder (and the Au foil) is aligned to that of the top perovskite layer. Thin-Pero has a perovskite-free TiO₂ layer mostly exposed to the surface; most of the surface of Thick-Pero is covered with the perovskite layer, and the exposed TiO2 layer should be in contact with the perovskite layer. Thus, the observed core level shifts of the TiO₂ layer from Thick-Pero compared to those of Thin-Pero explain the upward shift of the core levels of TiO₂ for Thick-Pero; the core level shifts of the underlying TiO₂ layer are a result of a shift in the band alignment at the interface between the perovskite and TiO₂ layers. The observed decrease in the binding energies of the Ti 2p and O 1s core levels for Thick-Pero indicates an upward shift of TiO₂ at the interface. The origin for the observed shift can come from a number of influences such as a possible charge transfer to the TiO₂ layer or the introduction of gap states at the interface of perovskite and TiO₂ due to surface defects; any change in the charge state at the surface or interface of TiO₂ can induce a shift of Fermi level and the related core level binding energies.⁴⁰⁻⁴² Although the origin of the band bending may require additional intense research efforts and is beyond the scope of the present study, here we certainly note the importance of the possible change in the final band alignment between the two layers depending on the detailed chemical bonding structure at the interface of the perovskite and TiO₂ layers. The shift in the band alignment at the MAPbI₃/TiO₂ interface may have a strong influence on the photovoltaic performance at the interface. For example, an earlier report suggests that the interfacial dipole formed at the MAPbI₃/TiO₂ interface may act as an electron-transfer barrier and limit the overall photovoltaic efficiency.¹⁶

4. CONCLUSIONS

In conclusion, after a systematic comparison of core levels and valence band spectra for the thick and thin MAPbI₃/TiO₂, we find important characteristics in the electronic structure at the interface. The new interfacial bonding state of Pb is observed and is assigned to residual PbI₂ predominantly accumulated at the interface with TiO₂. The N 1s core level also reveals an interfacial nitrogen species associated with methylamine bound at the interface. Valence band spectra show that the VBM is about 1.5 eV below E_F for both cases, suggesting that the CBM of the perovskite layer is aligned to the Au reference foil. The valence band features of TiO₂ are resolved for Thin-Pero, allowing a construction of relative band alignment between the two layers; the E_F 's are aligned to the CBMs of the perovskite and TiO₂ layers. For the Thick-Pero, however, we find that the charge transfer from the perovskite layer to TiO₂ induces an

upward band bending of the VB and CB of TiO_2 at the interface and shifts the E_F of TiO_2 lower in the band gap; this results in an electron transfer barrier and may limit the overall photovoltaic performance.

AUTHOR INFORMATION

Corresponding Authors

*Phone: 82-31-219-2896. Fax: 82-31-219-2969. E-mail: yukwonkim@ajou.ac.kr.

*Phone: 82-31-219-2577. Fax: 82-31-219-2208. E-mail: huijoon@ajou.ac.kr.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (NRF-2014R1A1A2056403). This work is also supported by "Human Resources Program in Energy Technology" of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the MOTIE, Republic of Korea (Project No: 2015 4010 200820).

REFERENCES

(1) Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; et al. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. *Sci. Rep.* **2012**, *2*, 591.

(2) Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. *Science* **2012**, *338*, 643–647.

(3) Jeon, S.; Thakur, U. K.; Lee, D.; Wenping, Y.; Kim, D.; Lee, S.; Ahn, T. K.; Park, H. J.; Kim, B.-G. N-phenylindole-Diketopyrrolopyrrole-Containing Narrow Band-Gap Materials for Dopant-Free Hole Transporting Layer of Perovskite Solar Cell. *Org. Electron.* **2016**, *37*, 134–140.

(4) Green, M. A.; Ho-Baillie, A.; Snaith, H. J. The Emergence of Perovskite Solar Cells. *Nat. Photonics* **2014**, *8*, 506–514.

(5) Marchioro, A.; Teuscher, J.; Friedrich, D.; Kunst, M.; van de Krol, R.; Moehl, T.; Grätzel, M.; Moser, J.-E. Unravelling the Mechanism of Photoinduced Charge Transfer Processes in Lead Iodide Perovskite Solar Cells. *Nat. Photonics* **2014**, *8*, 250–255.

(6) Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Chemical Management for Colorful, Efficient, and Stable Inorganic– Organic Hybrid Nanostructured Solar Cells. *Nano Lett.* **2013**, *13*, 1764–1769.

(7) Kwon, U.; Kim, B.-G.; Nguyen, D. C.; Park, J.-H.; Ha, N. Y.; Kim, S.-J.; Ko, S. H.; Lee, S.; Lee, D.; Park, H. J. Solution-Processible Crystalline NiO Nanoparticles for High-Performance Planar Perovskite Photovoltaic Cells. *Sci. Rep.* **2016**, *6*, 30759.

(8) Bretschneider, S. A.; Weickert, J.; Dorman, J. A.; Schmidt-Mende, L. Research Update: Physical and Electrical Characteristics of Lead Halide Perovskites for Solar Cell Applications. *APL Mater.* **2014**, *2*, 040701.

(9) Castelli, I. E.; García-Lastra, J. M.; Thygesen, K. S.; Jacobsen, K. W. Bandgap Calculations and Trends of Organometal Halide Perovskites. *APL Mater.* **2014**, *2*, 081514.

(10) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

(11) Saliba, M.; Orlandi, S.; Matsui, T.; Aghazada, S.; Cavazzini, M.; Correa-Baena, J.-P.; Gao, P.; Scopelliti, R.; Mosconi, E.; Dahmen, K.-H.; et al. A Molecularly Engineered Hole-Transporting Material for Efficient Perovskite Solar Cells. *Nat. Energy* **2016**, *1*, 15017.

The Journal of Physical Chemistry C

(12) Ke, W.; Fang, G.; Wang, J.; Qin, P.; Tao, H.; Lei, H.; Liu, Q.; Dai, X.; Zhao, X. Perovskite Solar Cell with an Efficient TiO_2 Compact Film. ACS Appl. Mater. Interfaces **2014**, *6*, 15959–15965.

(13) Lindblad, R.; Bi, D.; Park, B.-W.; Oscarsson, J.; Gorgoi, M.; Siegbahn, H.; Odelius, M.; Johansson, E. M. J.; Rensmo, H. Electronic Structure of TiO₂/CH₃NH₃PbI₃ Perovskite Solar Cell Interfaces. *J. Phys. Chem. Lett.* **2014**, *5*, 648–653.

(14) Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. *Science* **2013**, *342*, 341– 344.

(15) Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. Electron-Hole Diffusion Lengths > 175 μ m in Solution-Grown CH₃NH₃PbI₃ Single Crystals. *Science* **2015**, 347, 967–970.

(16) Xing, G.; Wu, B.; Chen, S.; Chua, J.; Yantara, N.; Mhaisalkar, S.; Mathews, N.; Sum, T. C. Interfacial Electron Transfer Barrier at Compact TiO₂/CH₃NH₃PbI₃ Heterojunction. *Small* **2015**, *11*, 3606– 3613.

(17) Zhu, Z.; Ma, J.; Wang, Z.; Mu, C.; Fan, Z.; Du, L.; Bai, Y.; Fan, L.; Yan, H.; Phillips, D. L.; Yang, S. Efficiency Enhancement of Perovskite Solar Cells through Fast Electron Extraction: The Role of Graphene Quantum Dots. *J. Am. Chem. Soc.* **2014**, *136*, 3760–3763.

(18) Ponseca, C. S.; Savenije, T. J.; Abdellah, M.; Zheng, K.; Yartsev, A.; Pascher, T.; Harlang, T.; Chabera, P.; Pullerits, T.; Stepanov, A.; et al. Organometal Halide Perovskite Solar Cell Materials Rationalized: Ultrafast Charge Generation, High and Microsecond-Long Balanced Mobilities, and Slow Recombination. *J. Am. Chem. Soc.* **2014**, *136*, 5189–5192.

(19) Wang, Q.; Lyu, M.; Zhang, M.; Yun, J.-H.; Chen, H.; Wang, L. Transition from the Tetragonal to Cubic Phase of Organohalide Perovskite: The Role of Chlorine in Crystal Formation of $CH_3NH_3PbI_3$ on TiO₂ Substrates. *J. Phys. Chem. Lett.* **2015**, *6*, 4379–4384.

(20) Yu, H.; Wang, F.; Xie, F.; Li, W.; Chen, J.; Zhao, N. The Role of Chlorine in the Formation Process of "CH₃NH₃PbI_{3-x}Cl_x" Perovskite. *Adv. Funct. Mater.* **2014**, *24*, 7102–7108.

(21) Mosconi, E.; Grancini, G.; Roldán-Carmona, C.; Gratia, P.; Zimmermann, I.; Nazeeruddin, M. K.; De Angelis, F. Enhanced $TiO_2/$ MAPbI₃ Electronic Coupling by Interface Modification with PbI₂. *Chem. Mater.* **2016**, *28*, 3612–3615.

(22) Kim, T. G.; Seo, S. W.; Kwon, H.; Hahn, J.; Kim, J. W. Influence of Halide Precursor Type and Its Composition on the Electronic Properties of Vacuum Deposited Perovskite Films. *Phys. Chem. Chem. Phys.* **2015**, *17*, 24342–24348.

(23) Liu, P.; Liu, X.; Lyu, L.; Xie, H.; Zhang, H.; Niu, D.; Huang, H.; Cheng, B.; Xiao, Z.; Huang, J.; et al. Interfacial Electronic Structure at the CH₃NH₃PbI₃/MoO₂ Interface. *Appl. Phys. Lett.* **2015**, *106*, 193903.

(24) Conings, B.; Baeten, L.; De Dobbelaere, C.; D'Haen, J.; Manca, J.; Boyen, H.-G. Perovskite-Based Hybrid Solar Cells Exceeding 10% Efficiency with High Reproducibility Using a Thin Film Sandwich Approach. *Adv. Mater.* **2014**, *26*, 2041–2046.

(25) Calloni, A.; Abate, A.; Bussetti, G.; Berti, G.; Yivlialin, R.; Ciccacci, F.; Duò, L. Stability of Organic Cations in Solution-Processed CH₃NH₃PbI₃ Perovskites: Formation of Modified Surface Layers. J. Phys. Chem. C **2015**, *119*, 21329–21335.

(26) Pederson, L. R. Two-Dimensional Chemical-State Plot for Lead Using XPS. J. Electron Spectrosc. Relat. Phenom. **1982**, 28, 203–209.

(27) Barr, T. L.; Yin, M.; Varma, S. Detailed X-Ray Photoelectron Spectroscopy Valence Band and Core Level Studies of Select Metals Oxidations. J. Vac. Sci. Technol., A **1992**, 10, 2383–2390.

(28) Chen, Q.; Zhou, H.; Song, T.-B.; Luo, S.; Hong, Z.; Duan, H.-S.; Dou, L.; Liu, Y.; Yang, Y. Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells. *Nano Lett.* **2014**, *14*, 4158–4163.

(29) Bi, D.; Tress, W.; Dar, M. I.; Gao, P.; Luo, J.; Renevier, C.; Schenk, K.; Abate, A.; Giordano, F.; Correa Baena, J.-P.; et al. Efficient Luminescent Solar Cells Based on Tailored Mixed-Cation Perovskites. *Sci. Adv.* **2016**, *2*, e1501170.

(30) Lee, Y. H.; Luo, J.; Humphry-Baker, R.; Gao, P.; Grätzel, M.; Nazeeruddin, M. K. Unraveling the Reasons for Efficiency Loss in Perovskite Solar Cells. *Adv. Funct. Mater.* **2015**, *25*, 3925–3933.

(31) Liu, F.; Dong, Q.; Wong, M. K.; Djurišić, A. B.; Ng, A.; Ren, Z.; Shen, Q.; Surya, C.; Chan, W. K.; Wang, J.; et al. Is Excess PbI_2 Beneficial for Perovskite Solar Cell Performance? *Adv. Energy Mater.* **2016**, *6*, 1502206.

(32) Heo, J. H.; Song, D. H.; Han, H. J.; Kim, S. Y.; Kim, J. H.; Kim, D.; Shin, H. W.; Ahn, T. K.; Wolf, C.; Lee, T.-W.; et al. Planar CH₃NH₃PbI₃ Perovskite Solar Cells with Constant 17.2% Average Power Conversion Efficiency Irrespective of the Scan Rate. *Adv. Mater.* **2015**, *27*, 3424–3430.

(33) Chen, S.; Goh, T. W.; Sabba, D.; Chua, J.; Mathews, N.; Huan, C. H. A.; Sum, T. C. Energy Level Alignment at the Methylammonium Lead Iodide/Copper Phthalocyanine Interface. *APL Mater.* **2014**, *2*, 081512.

(34) Ng, T.-W.; Chan, C.-Y.; Lo, M.-F.; Guan, Z. Q.; Lee, C.-S. Formation Chemistry of Perovskites with Mixed Iodide/Chloride Content and the Implications on Charge Transport Properties. *J. Mater. Chem. A* **2015**, *3*, 9081–9085.

(35) Chen, J. J.; Winograd, N. The Adsorption and Decomposition of Methylamine on Pd{111}. *Surf. Sci.* **1995**, *326*, 285–300.

(36) Dietrich, P. M.; Graf, N.; Gross, T.; Lippitz, A.; Krakert, S.; Schüpbach, B.; Terfort, A.; Unger, W. E. S. Amine Species on Self-Assembled Monolayers of ω -Aminothiolates on Gold as Identified by XPS and NEXAFS Spectroscopy. *Surf. Interface Anal.* **2010**, *42*, 1184–1187.

(37) Calloni, A.; Brambilla, A.; Berti, G.; Bussetti, G.; Canesi, E. V.; Binda, M.; Petrozza, A.; Finazzi, M.; Ciccacci, F.; Duò, L. X-Ray Photoemission Spectroscopy Investigation of the Interaction between 4-Mercaptopyridine and the Anatase TiO_2 Surface. *Langmuir* **2013**, *29*, 8302–8310.

(38) Song, X.; Ma, Y.; Wang, C.; Dietrich, P. M.; Unger, W. E. S.; Luo, Y. Effects of Protonation, Hydrogen Bonding, and Photodamaging on X-Ray Spectroscopy of the Amine Terminal Group in Aminothiolate Monolayers. *J. Phys. Chem. C* 2012, *116*, 12649–12654. (39) McCafferty, E.; Wightman, J. P. Determination of the Concentration of Surface Hydroxyl Groups on Metal Oxide Films by a Quantitative XPS Method. *Surf. Interface Anal.* 1998, *26*, 549– 564.

(40) Mao, X.; Lang, X.; Wang, Z.; Hao, Q.; Wen, B.; Ren, Z.; Dai, D.; Zhou, C.; Liu, L.-M.; Yang, X. Band-Gap States of $TiO_2(110)$: Major Contribution from Surface Defects. *J. Phys. Chem. Lett.* **2013**, *4*, 3839–3844.

(41) Yang, Z.; Wu, R.; Goodman, D. W. Structural and Electronic Properties of Au on $TiO_2(110)$. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2000**, *61*, 14066.

(42) Kao, C. C.; Tsai, S. C.; Bahl, M. K.; Chung, Y. W. Electronic Properties, Structure and Temperature-Dependent Composition of Nickel Deposited on Rutile Titanium Dioxide (110) Surfaces. *Surf. Sci.* **1980**, *95*, 1–14.